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SUMMARY

This paper studies the application of the continuous sensitivity equation method (CSEM) for the Navier–
Stokes equations in the particular case of shape parameters. Boundary conditions for shape parameters
involve �ow derivatives at the boundary. Thus, accurate �ow gradients are critical to the success of the
CSEM. A new approach is presented to extract accurate �ow derivatives at the boundary. High order
Taylor series expansions are used on layered patches in conjunction with a constrained least-squares
procedure to evaluate accurate �rst and second derivatives of the �ow variables at the boundary, required
for Dirichlet and Neumann sensitivity boundary conditions. The �ow and sensitivity �elds are solved
using an adaptive �nite-element method. The proposed methodology is �rst veri�ed on a problem with
a closed form solution obtained by the Method of Manufactured Solutions. The ability of the proposed
method to provide accurate sensitivity �elds for realistic problems is then demonstrated. The �ow and
sensitivity �elds for a NACA 0012 airfoil are used for fast evaluation of the nearby �ow over an airfoil
of di�erent thickness (NACA 0015). Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Sensitivity analysis is used for a wide range of engineering problems. Contrary to adjoint
approaches [1–3], which only exist within the context of an optimization problem, sensitivities
exist on their own. While they �nd uses in design optimization [4], they can be used for non-
optimization purposes, such as characterization of complex �ows, uncertainty analysis [5], fast
evaluation of nearby �ows, etc. Sensitivity information can be obtained in two ways. In the
approximate-then-di�erentiate approach (often called discrete sensitivity equation method),
the discrete form of the �ow equations are di�erentiated and the total derivative of the �ow
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discretization with respect to the design parameters is calculated. In the di�erentiate-then-
approximate approach (known as the continuous sensitivity equation method (CSEM)), partial
di�erential equations for the �ow sensitivities are obtained by implicit di�erentiation of the
equations governing the �ow. They are then approximated numerically.
The CSEM is preferred for the present study, because it o�ers several advantages over

the discrete sensitivity approach. In particular, since di�erentiation occurs before any discreti-
zation, the delicate computation of mesh sensitivities and all of the overhead associated with
them is avoided. Although automatic di�erentiation can be used to generate the necessary terms
in formulating the CSE, the CSEM requires less memory and is computationally less expensive
than automatic di�erentiation, as shown by Borggaard and Verma [6]. Moreover, the CSEM is
a natural approach when using adaptive methods: since the topology of the mesh changes with
adaptation, mesh derivatives do not exist, making the discrete sensitivity method ill-suited.
Another advantage is that there is no requirement to use the same algorithm to approximate
the CSE and the original PDE model. Thus, special algorithms can be constructed to take
advantage of the linear structure of the CSE.
However, the main di�culty with the CSEM arises when one deals with shape parame-

ters. In this particular case, �ow gradients are required as source terms in the CSE and as
coe�cients in the boundary conditions for the CSE. Flow gradients in the interior of the
computational domain can be computed relatively easily and accurately by a local projection
technique [7] (which is already used for error estimation). However, on general unstructured
meshes, the accuracy of reconstructed derivatives degrades signi�cantly near the boundary [8].
This induces errors in the boundary conditions that result in poor solutions for the sensitivity
�elds (the numerical solution often appears shifted from the exact solution by some �xed
amount that varies from one problem to the next).
The current study presents a new approach to extract accurate boundary conditions of the

CSE for shape parameters. It uses high order Taylor series expansions in conjunction with
a constrained least-squares procedure. The proposed approach is �rst veri�ed on a boundary
layer �ow problem with a closed form solution obtained by the method of manufactured
solutions (MMS) [8, 9]. The MMS provides a rigorous framework to precisely quantify the
numerical errors. Flows around airfoils are then considered to illustrate the ability of the pro-
posed method to deal with realistic problems. The CSEM is used for fast evaluation of nearby
�ows via linear Taylor series in parameter space. The �ow and sensitivity �elds computed
around a NACA 0012 airfoil are used to evaluate the �ow around a NACA 0015 airfoil,
by considering the airfoil thickness as a shape parameter. The extrapolated �ow obtained is
compared to the true �ow computed around a NACA 0015 airfoil.

2. FLOW EQUATIONS

The �ows of interest are described by the laminar steady Navier–Stokes equations. The mass,
momentum and energy conservation laws are written as

�u · ∇u = −∇p+∇ · {�(∇u+ (∇u)T)} − �g�(T − T0) + f (1)

∇ · u = 0 (2)

�cpu · ∇T = ∇ · (�∇T ) + q (3)
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using the Boussinesq approximation, where � is the density, � the viscosity, u the velocity, p
the pressure, T the temperature, g the gravity, � the bulk expansion coe�cient, cp the speci�c
heat, T0 a reference temperature and � the conductivity. Finally, f and q are volumetric forces
and heat source, respectively.
Dirichlet and Neumann boundary conditions are imposed on boundaries �D and �N, respec-

tively,

T = �T (�TD) (4)

�∇T · n̂= �q (�TN) (5)

u= �u (�uD) (6)

[−pI+ �(∇u+ (∇u)T)] · n̂= �t (�uN) (7)

where n̂ is an outward unit vector normal to the boundary and I the second-order identity
tensor.

3. CONTINUOUS SENSITIVITY EQUATIONS

The continuous sensitivity equations (CSE) are derived formally by implicit di�erentiation of
the �ow equations (1)–(3) with respect to an arbitrary parameter a. Thus, we treat the variable
u as a function of both space and parameter a. This dependence is denoted u= u(x; a). The
�ow sensitivities are de�ned as the following partial derivatives:

su=
@u
@a
; sp=

@p
@a
; sT =

@T
@a

(8)

Then, with no particular assumption on the nature of the parameter a, the CSEs governing
the sensitivity �elds are written as

�′u · ∇u+ �(su · ∇u+ u · ∇su) =−∇sp +∇ · {�′(∇u+ (∇u)T)}

+∇ · {�(∇su + (∇su)T)}

−�′g�(T − T0)− �ga�(T − T0)

−�g�′(T − T0)− �g�(sT − (T0)a)

+fa (9)

∇ · su = 0 (10)

(�′cp + �c′p)u · ∇T + �cp(su · ∇T + u · ∇sT ) = ∇ · (�∇sT + �′∇T ) + qa (11)

ga, (T0)a, fa and qa are the partial derivatives of g, T0, f and q in Equations (1) and (3). The
total derivatives of the �uid properties with respect to the parameter a are denoted using a (′).

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:147–164



150 R. DUVIGNEAU AND D. PELLETIER

For instance

�′=
D�
Da

=
@�
@a
+
@�
@u

· su + @�
@T
sT (12)

To complete the description of the problem, the boundary conditions (5)–(6) are di�erenti-
ated in the same manner. However, if a is a shape parameter, the position of the boundary is
parameter dependent. Then, the di�erentiation must account for the fact that both the bound-
ary location and the value of the boundary condition depend on a. Therefore, the boundary
conditions for the CSE are

sT = �T ′ − ∇T · @x
@a

(�TD) (13)

(�′∇T + �∇sT ) · n̂= �q′ −
{

∇(�∇T ) · @x
@a

}
· n̂ − �(∇T ) · @n̂

@a
; (�TN) (14)

su = �u′ − ∇u · @x
@a

(�uD) (15)

[− spI+ �(∇su + (∇su)T)] · n̂+ [�′(∇u+ (∇u)T)] · n̂

= �t′ −
{

∇[−pI+ �(∇u+ (∇u)T)] · @x
@a

}
· n̂

−[−pI+ �(∇u+ (∇u)T)] · @n̂
@a

(�uN) (16)

As can be seen, when shape parameters are considered, the �rst derivatives of the �ow
variables at the boundary are needed to evaluate sensitivity Dirichlet boundary conditions
and second derivatives are required for sensitivity Neumann boundary conditions. This
introduces signi�cant numerical challenges and di�culties when solving the CSE. Since ap-
proximate boundary conditions are constructed from the �nite-element solution for the �ow
�eld, inaccuracies in the boundary conditions will result in poor solutions for the sensitivity
�elds.

4. NUMERICAL FRAMEWORK

4.1. Solver

The �ow equations as well as CSE are solved using an adaptive �nite-element method [10, 11].
One notices that the cost of implementing the CSE resolution is modest, since the CSE share
the same structure and boundary condition type as the original �ow problem. We discuss the
salient features here for completeness and to set up the approximation of the above-described
CSE. The weak form of the continuity, momentum and energy equations are formed, and
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a discretization based on the 7-noded Crouzeix–Raviart element pair leads to a system of
nonlinear algebraic equations which are then solved using Newton’s method.
The accuracy of �nite-element approximation is directly related to the element mesh size

used. An adaptive remeshing procedure is employed to improve this approximation by re�n-
ing the mesh in regions of rapid variations of the �ow variables. The regions targeted for
re�nement are identi�ed by using an error estimator based on local projections of discon-
tinuous quantities onto a local continuous polynomial basis [7, 12]. For example, since the
Crouzeix–Raviart element pair uses quadratic basis functions for velocity and temperature,
the quantities � and �∇T are both discontinuous and piecewise linear for this approximation.
By projecting these derivatives onto a continuous quadratic polynomial basis, we can de�ne
an error estimate by measuring the di�erence between the reconstructed and �nite-element
derivatives.
Once error estimates are obtained for all dependent variables, an optimal mesh is designed

using the asymptotic convergence rate of the �nite-element method. An optimal mesh is
generated which redistributes the mesh sizes so that each element bears the same contribution
to the total error (i.e. equidistribution of the error norm). This is performed in an iterative
fashion, beginning with a coarse mesh and producing progressively �ner meshes, by reducing
the error by a constant factor from one mesh to the next. Details of this adaptive remeshing
procedure may be found in the literature [13].

4.2. Boundary conditions for CSE

As explained above, �ow boundary derivatives are required by the CSE boundary conditions
for shape parameters. The local projection of �ow derivatives, used for errors
estimation [7, 12], may be employed to provide the boundary derivatives. However, this ap-
proach yields poor results since projected derivatives usually exhibit low accuracy at the
boundary, as shown in the previous work of Turgeon et al. [4, 8]. To improve the evalu-
ation of the �ow derivatives at the boundary, we propose to use high order Taylor series
expansions around each boundary vertex. The method to extract �ow derivatives using a
least-squares method was demonstrated by Fortin et al. [14]. We innovate by enforcing con-
straints on the least-squares method to ensure that the Taylor series are consistent with the
boundary conditions.
For the sake of simplicity, the proposed method is presented for a generic �ow variable �.

The truncated Taylor series expansion of order k for the �ow variable � around a boundary
node P(xp; yp) reads

�(x; y) =�(xp; yp) + (x − xp)�x + (y − yp)�y
+1
2(x − xp)2�xx + (x − xp)(y − yp)�xy + 1

2(y − yp)2�yy + · · · (17)

in which � and its derivatives are the unknowns. Their values are determined by matching,
in a least-squares sense, the value of the Taylor series to that of the �ow variable at a set of
points N (xn; yn) within a patch P surrounding the node P. This corresponds to solving the
following overdetermined rectangular system of equations:

�N =BTy� ∀N ∈P (18)
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where
�N = �(xn; yn) (19)

BT = {1 xn − xp yn − yp 1
2 (xn − xp)2 (xn − xp)(yn − yp) 1

2 (yn − yp)2 : : :} (20)

yT� = {� �x �y �xx �xy �yy : : :}P (21)

To determine y�, a discrete least-squares problem is solved by minimizing the square of
the distance between the Taylor series and the value of the variable at the N mesh nodes in
the patch P. That is we minimize the quadratic form J(y�)

MinJ(y�)=
1
2

∑
N ∈P

(BTy� − �N )2 (22)

The boundary condition for � at node P is either a Dirichlet condition �=�P or a Neumann
condition ∇� · n̂= qP�. However, there is no guarantee that the Taylor series (17) evaluated
at the boundary node P will match the boundary condition. Further accuracy improvements
are achieved if the least-squares solution y� is constrained to match the value of the boundary
condition at node P. The boundary condition is then considered as a constraint for the least-
squares problem. One may propose to constrain the least-squares solution to match the value
of the boundary condition at all boundary nodes of the patch. However, this will result in a
too large a number of constraints for the degree of the Taylor series.
In the case of a Dirichlet boundary condition �=�P, we now minimize J(y�) subject to

y�(1)=�P. The constraint is enforced by introducing a Lagrange multiplier l� so that the
resulting least-squares problem reads

MinJD(y�)=
1
2

∑
N∈P

(BTy� − �N )2 + l�(DT�y� − �P) (23)

where DT�= {1 0 0 : : : 0}. By setting the gradients of (23) to zero, we obtain the following
linear system for y�: ⎡

⎣
∑

N∈PBB
T D�

DT� 0

⎤
⎦ {

y�

l�

}
=

{∑
N∈PB�N

�P

}
(24)

whose solution is obtained by LU factorization. In the case of a Neumann boundary condition
∇� · n̂= qP�, we thus minimize the quadratic form J(y�) subject to y�(2)n̂x+ y�(3)n̂y= qP�

MinJN (y�)=
1
2

∑
N∈P

(BTy� − �N )2 + l�(NT�y� − qP�) (25)

with NT�= {0; n̂xn̂y; 0; : : : ; 0}. The extremum corresponds to the solution of the following linear
system: ⎡

⎢⎣
∑

N∈PBB
T N�

NT� 0

⎤
⎥⎦

{
y�

l�

}
=

{∑
N∈P B�N

qP�

}
(26)
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First-order boundary derivatives y�(2)=�x and y�(3)=�y, and second-order boundary deriva-
tives y�(4)=�xx, y�(5)=�xy and y�(6)=�yy are then used to evaluate boundary conditions
for the CSE. To make the methodology more concrete, we consider in turn the four cases
corresponding to the four boundary conditions for the Navier–Stokes equations provided by
Equations (13)–(16) in Appendix A.

5. VERIFICATION FOR A BOUNDARY LAYER FLOW

5.1. Problem description

We study the accuracy of the proposed scheme using the MMS [8, 9] for a simple boundary
layer �ow. The MMS is a rigorous and general procedure to verify the numerical accuracy of
a given code. It consists in imposing a closed form solution to a given problem, by modifying
the equations that are solved. Since the solution is known analytically, the numerical accuracy
can be evaluated by performing a systematic grid re�nement study. We use a manufactured
solution [15] that behaves like a two-dimensional mixed convection boundary layer along
a heated �at plate. This closed form solution provides a rigorous framework to assess the
following points:

• The convergence of the �ow and its sensitivities to the exact solution with mesh adap-
tation.

• The loss of accuracy arising from the approximate �ow gradients used in the boundary
conditions along parameter dependent boundaries.

• The accuracy improvements due to the constrained Taylor least-squares reconstruction of
boundary derivatives.

• The e�ects of the Taylor series order and of the extent of the patch on the global
accuracy.

The following expressions are a manufactured solution mimicking mixed convection along
a �at plate:

U =U0(1− e−�); V =
U0
2�

√
x
(1− (1 + �)e−�); p= x2 − 0:01; T =�Te−	 + T0 (27)

with

�=(y − y0)
√
U0�
�x
; �=

√
U0�
�
; 	=

(�cp



)n
(y − y0)

√
�U0
�x

(28)

These expressions are substituted in the �ow equations to determine the required source terms
to ensure heat and momentum balance. The above solution is then di�erentiated with respect
to y0 the vertical position of the plate, yielding an exact solution to the sensitivity equations
for a shape parameter. The source term for the CSE is the derivative of the �ow source term.
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For numerical purposes, we choose the following data:

U0=1; �=0:01; �T=1; n= 1
3 ; y0=0; T0=0; �=1; cp=1
 = 1

70 ; �=0:5
(29)

The computational domain is the rectangle [0:1; 1:]× [0:; 1:]. In our tests, we use Dirichlet
boundary conditions on all boundaries for the �ow and sensitivity equations. The only excep-
tion is at the inlet between y=0:75 and 1.0, where the condition tx= −p+2�(@u=@x)=0 is
imposed for the horizontal velocity, and on the plate where the heat �ux q=�(@T=@y)= �q is
prescribed. Thus, two Neumann boundary conditions, one on velocity and one on temperature,
are imposed. The Neumann boundary condition for temperature at the wall signi�cantly in-
creases the di�culty of recovering derivatives, because high velocity and temperature gradients
are observed at this location.

5.2. Results

First, results from previous work, using the local projection method to evaluate boundary
derivatives, are presented to underline the poor accuracy of the resulting boundary conditions
and the need for improvement [8]. Figure 1 presents the error trajectories and e�ciency indices
(ratio of global error estimate to the true global error) for the velocity and temperature sensitiv-
ities. Notice that the error estimates do not converge to the true errors, yielding poor e�ciency
indices. This behaviour is due to the presence of numerical errors in the boundary
conditions for the CSE, which shifts the solution. This e�ect cannot be detected by the error
estimator. One concludes that error estimates for the CSE in previous work were suboptimal
in the case of shape parameters.
To study the in�uence of the extent of the patch in the present approach, we introduce

the concept of an l-layer patch. A 1-layer patch includes all elements that are connected to
a given node P, a 2-layer patch includes elements which are connected to elements of the
1-layer patch of node P, etc : : : Figure 2 provides two examples of 2-layer patches, one for
a vertex node and another for a mid-side node.
Figures 3(a)–6(b) show the error trajectories and e�ciency indices for the velocity and

temperature sensitivities obtained with the proposed approach, increasing the order of the
Taylor series and the size of the patches. As can be seen, poor results are obtained using
4th-order (degree 3) Taylor series expansions. In fact, e�ciency indices are worse than those
obtained using the local projection method. Improvements are detected with Taylor series
of order 5 (degree 6), although asymptotic exactness is not achieved. Better behaviour is
obtained with Taylor series of order 6 and 7 (degree 5 and 6): asymptotic exactness of
the estimator can be clearly seen. This is con�rmed by the curves of the e�ciency indices
which asymptote to one. These results can be explained by considering the order of accuracy
of the boundary condition: when a Neumann boundary condition for the CSE is imposed,
the second derivatives of the �ow variables are included in the boundary condition. Thus,
if 4th-order Taylor series expansions are used for the �ow, the boundary condition is only
2nd-order accurate. Then, the accuracy of the boundary condition is lower than that of the
�nite-element method used (3rd-order), which explains the poor results obtained in this case.
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Figure 1. Grid convergence results using the local projection method: (a) error trajectories;
and (b) e�ciency indices.
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Figure 2. Typical 2-layer patches around node P.

On the other hand, when Taylor series expansions of order higher than 5 are used for the
�ow, the accuracy of the boundary condition is higher than that of the �nite-element method,
yielding asymptotic exactness of the solution and the error estimator.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:147–164



156 R. DUVIGNEAU AND D. PELLETIER

(a) (b)

 0.01

 0.1

 1

 10

 100

 100  1000  10000  100000

er
ro

r

number of nodes

True error - vel.
Error estimate - vel.

True error - temp.
Error estimate - temp.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100  1000  10000  100000

ef
fi

ci
en

cy
 in

de
x

number of nodes

Vel.
Temp.

Figure 3. Grid convergence results using 4th-order Taylor series expansions on 5-layer patches:
(a) errors; and (b) e�ciency indices.
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Figure 4. Grid convergence results using 5th-order Taylor series expansions on 6-layer patches:
(a) errors; and (b) e�ciency indices.
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Figure 5. Grid convergence results using 6th-order Taylor series expansions on 7-layer patches:
(a) errors; and (b) e�ciency indices.
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Figure 6. Grid convergence results using 7th-order Taylor series expansions on 8-layer patches:
(a) errors; and (b) e�ciency indices.

6. APPLICATION TO EVALUATION OF NEARBY AIRFOIL FLOWS

6.1. Problem description

Now, we apply the proposed method to realistic airfoil problems at low Reynolds numbers. We
use sensitivity information to estimate nearby solutions for airfoils of di�erent thickness. The
�ow around a NACA 0012 airfoil at a Reynolds number Re=2000 and an incidence angle
of �=5◦ is used as a baseline �ow and geometry. Dirichlet boundary conditions are imposed
at the in�ow and on the airfoil surface (no-slip boundary condition), and zero Neumann
boundary conditions are prescribed as far �eld conditions.
The points on a NACA 0012 airfoil verify the following equation:

yt = ± 5t(0:2969√x − 0:1260x − 0:3537x2 + 0:2843x3 − 0:1015x4) x∈ [0; 1] (30)

with t=0:12 the thickness. In this section, t is treated as a shape parameter. The solutions at
nearby values of the parameter t are obtained by evaluating linear Taylor series extrapolations
in t-space, using the �ow and sensitivity data from the baseline condition. The following
expressions are used to predict the �ow around the airfoil with a modi�ed thickness:

uNACA 00XX ≈ uNACA 0012 +
(
@u
@t

)
×�t

vNACA 00XX ≈ vNACA 0012 +
(
@v
@t

)
×�t

pNACA 00XX ≈pNACA 0012 +
(
@v
@t

)
×�t

(31)

Hence, fast estimates of the �ow around the airfoil with a modi�ed thickness can be
obtained. To illustrate the capability of the proposed method to evaluate accurate sensitivity
�elds, the �ow around a NACA 0015 airfoil is predicted using the �ow and sensitivity data
obtained from the baseline NACA 0012 airfoil. The extrapolated �ow is then compared to the
true �ow around a NACA 0015 airfoil obtained from a new separate adaptive computation.
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6.2. Results

Calculations are performed using 4th- to 7th-order Taylor series expansions and 4- to 8-
layer patches to evaluate boundary derivatives. The contours of Su obtained using these dif-
ferent parameters are plotted in Figure 7. As can be seen, the choice of order of Taylor
series and extent of the patch appear to have little in�uence on the contours of Su. Fourth-
order Taylor series expansions provide satisfactory results in this case, since only Dirichlet
boundary conditions are imposed on the parameter dependent boundary. Eight grid adap-
tation cycles are performed, the last mesh containing roughly 40 000 nodes. All �ow and
sensitivity variables contribute to the error estimation and mesh adaptation processes. From
here on we only present results obtained with 7th-order Taylor series expansions and 8-layer
patches.
Figure 8 shows the baseline pressure coe�cient along the surface of the NACA 0012 airfoil,

its extrapolation to that of a NACA 0015 airfoil and the pressure coe�cient from a �ow
analysis of a NACA 0015 airfoil. As can be seen, the agreement is very good. The pressure
coe�cient on the pressure side of the airfoil is predicted very accurately. For the suction side,
trends are well predicted. However, for the suction peak, there is a slight discrepancy between
the Taylor series and the reanalysis. This indicates that the pressure coe�cient dependency
in terms of t is more linear on the pressure side than on the suction side of the airfoil.
Figure 9 shows comparisons for the pressure �elds, for the NACA 0012 baseline, its Taylor

series extrapolation to a NACA 0015 and from reanalysis for a NACA 0015 airfoil. Although
large �ow modi�cations appear during the shape changes, a very satisfactory agreement is
obtained between the extrapolated pressure �eld and the pressure �eld obtained from a new
computation.
The velocity �eld is characterized by a large recirculation zone near the trailing edge of

the airfoil. The size and shape of the recirculation are in�uenced by the thickness of the
airfoil. Therefore, these characteristics are demanding criteria to assess the capability of the

(a)

(b)

(c)

(d)

Figure 7. E�ects of Taylor series order on Su: (a) 4th-order on 4-layer patches; (b) 5th-order on 6-layer
patches; (c) 6th-order on 7-layer patches; and (d) 7th-order on 8-layer patches.
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Figure 8. Comparison of the pressure coe�cient.

(a)

(b)

Figure 9. Comparison of pressure contours: (a) NACA 0012 (dashed) and extrapolated
NACA 0015 (solid); and (b) NACA 0015.

proposed approach to predict nearby solutions. Figure 10 shows the streamlines for the dif-
ferent computations. For the baseline NACA 0012 airfoil (Figure 10(a)), a large recirculation
zone is observed on the suction side close to the trailing edge. A second smaller recircu-
lation is also present just downstream of the trailing edge. The Taylor series estimate for a
NACA 0015 airfoil predicts the size increase for the two recirculation bubbles (Figure 10(b)).
The upper bubble is shifted upwards as the lower bubble increases in length. Results from a
�ow reanalysis around a NACA 0015 airfoil is shown in Figure 10(c). As can be seen from
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(a)

(b)

(c)

Figure 10. Comparison of streamlines in the recirculation zone: (a) NACA 0012;
(b) extrapolated NACA 0015; and (c) NACA 0015.

Figures 10(b) and (c), the characteristics of the recirculation zones are well predicted by the
Taylor series extrapolation. Particularly, the changes of the length and shape of the recircula-
tion zone are accurately predicted by the sensitivities.

7. CONCLUSION

A CSEM has been developed for shape parameters. We introduced a Taylor series l-patch
constrained least-squares procedure to evaluate the boundary �ow gradients which appear
in the CSE boundary conditions. Flow and sensitivity �elds were solved using an adaptive
�nite-element method.
Adaptive grid re�nement studies were performed using the MMS. For a simple boundary

layer �ow, the proposed Taylor series l-patch approach provides accurate boundary conditions
for CSE. More speci�cally, it is su�ciently accurate to ensure asymptotic exactness of the
error estimator with adaptive mesh re�nement.
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The proposed approach was then applied to fast evaluation of nearby �ow solutions around
NACA airfoils of varying thickness. Satisfactory results were obtained when the thickness is
considered as a shape parameter. The ability of the proposed method to predict the modi�ca-
tions of the pressure �eld or the wake characteristics due to thickness changes was demon-
strated.
According to this study, the asymptotic exactness of the sensitivity �elds and the error

estimator for shape parameters can be obtained, if the accuracy of the boundary conditions
for CSE is higher than that of the numerical methods used in the solver.

APPENDIX A

A.1. Dirichlet condition for the temperature

When the variable � considered is the temperature and a Dirichlet boundary condition T =TP
is imposed at node P, the constrained least-squares problem (24) obviously yields⎡

⎣
∑

N∈PBB
T DT

DTT 0

⎤
⎦ {

yT

lT

}
=

{∑
N∈PBTN

TP

}
(A1)

with

yTT = {T Tx Ty Txx Txy Tyy}P (A2)

DTT = {1 0 : : : 0} (A3)

yT (2)=Tx and yT (3)=Ty provide the temperature derivatives at the boundary to evaluate the
boundary condition for the temperature sensitivity

sT = �T ′ −
(
Tx
@xP
@a

+ Ty
@yP
@a

)
(�TD) (A4)

Note that �T ′, @xP=@a and @yP=@a are always problem dependent and provided by the user.

A.2. Neumann condition for the temperature

Consider now a Neumann boundary condition �∇T · n̂= qP imposed at node P. The con-
strained least-squares problem (26) yields the linear system⎡

⎣
∑

N∈PBB
T NT

NTT 0

⎤
⎦ {

yT

lT

}
=

{∑
N∈PBTN

qP

}
(A5)

with

NTT = {0 �n̂x �n̂y 0 : : : 0} (A6)
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Entries 2–6 of yT provide the �rst derivatives Tx and Ty, and second derivatives Txx, Txy and
Tyy required to evaluate the Neumann boundary condition for the sensitivity of temperature

(�′∇T + �∇sT ) · n̂ = �q′ − �
(
Txx
@xP
@a

+ Txy
@yP
@a

)
n̂x

−�
(
Tyx

@xP
@a

+ Tyy
@yP
@a

)
n̂y

−�
(
Tx
@n̂x
@a

+ Ty
@n̂y
@a

)
; (�TN) (A7)

assuming that � is a constant. If � varies in space or depends on physical variables, the above
expression becomes slightly more complex.

A.3. Dirichlet conditions for the �ow

When Dirichlet boundary conditions for the �ow u= uP and v= vP are imposed at node P,
one constrained Taylor least-squares problem is solved for each velocity component. This
procedure is identical to that just described for the temperature. Then, entries 2 and 3 of yu
and yv provide the �ow derivatives ux, uy, vx and vy at the boundary required to evaluate the
boundary conditions for the �ow sensitivities:

su= �u′ −
(
ux
@xP
@a

+ uy
@yP
@a

)
(�uD) (A8)

sv= �v′ − (vx @xP@a + vy
@yP
@a
) (�vD) (A9)

A.4. Neumann conditions for the �ow

This case must be analysed with care. Indeed, Neumann boundary conditions for the �ow at
node P involve the pressure p and the �rst derivatives of both velocity components u and v

[−p+ 2�ux �(uy + vx)

�(uy + vx) −p+ 2�vy

] {
n̂x

n̂y

}
=

{
txP

tyP

}
(A10)

Therefore, three least-squares problems must be solved in a coupled manner for the two veloc-
ity components and the pressure to ensure that the Taylor series for u, v, and p are consistent
with the boundary conditions imposed on the �ow. Our approach consists in minimizing the
sum of the three quadratic forms J(yu), J(yv) and J(yp) subject to the two constraints

{−yp(1) + 2�yu(2)}n̂x + �{yu(3) + yv(2)}n̂y = txP (A11)

�{yu(3) + yv(2)}n̂x + {−yp(1) + 2�yv(3)}n̂y = tyP (A12)
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In this case, the functional to minimize reads

Min
1
2

∑
N∈P

(BTyu − uN )2 + 12
∑
N∈P

(BTyv − vN )2 + 12
∑
N∈P

(BTyp − pN )2

+lu(NTuuyu +N
T
uvyv +N

T
pyp − txP) + lv(NTvuyu +NTvvyv +NTpyp − tyP) (A13)

with

yTu = {u ux uy uxx uxy uyy}P
yTv = {v vx vy vxx vxy vyy}P
yTp = {p px py pxx pxy pyy}P
NTuu = {0 2�n̂x �n̂y 0 : : : 0}
NTuv = {0 �n̂y 0 : : : 0}
NTup = {−n̂x 0 : : : 0}
NTvu = {0 0 �n̂x 0 : : : 0}
NTuv = {0 �n̂x 2�n̂y : : : 0}
NTvp = {−n̂y 0 : : : 0}

(A14)

lu and lv are Lagrange multipliers. By setting the gradients of (A13) to zero, we obtain the
coupled linear system to solve to determine yu, yv and yp that satisfy the �ow boundary
conditions at node P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
N∈PBB

T Nuu Nvu∑
N∈PBB

T Nuv Nvv∑
N∈PBB

T Nup Nvp

NTuu NTuv NTup

NTvu NTvv NTvp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yu

yv

yp

lu

lv

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
N∈PBuN∑
N∈PBvN∑
N∈PBpN

tx

ty

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A15)

Entries of yu, yv and yp provide the velocity and pressure boundary derivatives required to
evaluate the CSE boundary conditions:

{−Sp + 2�(Su)x + 2�′ux}n̂x + {�(Su)y + �(Sv)x + �′uy + �′vx}n̂y

= tx′P − {(−px + 2�uxx)n̂x + �(uyx + vxx)n̂y}@xP@a
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−{(−py + 2�uxy)n̂x + �(uyy + vxy)n̂y}@yP@a
−

{
(−p+ 2�ux)@n̂x@a + �(uy + vx)

@n̂y
@a

}
(A16)

{�(Su)y + �(Sv)x + �′uy + �′vx}n̂x + {−Sp + 2�(Sv)y + 2�′vy}n̂y

= ty′
P − {�(uyx + vxx)n̂x + (−px + 2�vyx)n̂y}@xP@a

−{�(uyy + vxy)n̂x + (−py + 2�vyy)n̂y}@yP@a

−
{
�(uy + vx)

@n̂x
@a

+ (−p+ 2�vy)@n̂y@a
}

(A17)

assuming that � is constant. Additional terms appear when �=�(x; y) or if � depends on
physical variables as would be the case for non-Newtonian �ows.
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